| 1. | Discusses global and local transformations 讨论全局变换和局部变换。 |
| 2. | A local transformation applies to a specific item to be drawn 局部变换应用于要绘制的特定项目。 |
| 3. | Global and local transformations >全局变换和局部变换 |
| 4. | The rectangle is filled once with no local transformation and once with a local transformation 矩形经过两次填充:一次不使用局部变换,一次使用局部变换。 |
| 5. | The local transformation consists of a horizontal scaling by a factor of 2 followed by a 30 - degree rotation 局部变换包括在水平方向上缩放2倍,然后再旋转30度。 |
| 6. | In contrast , a local transformation is a transformation that applies to a specific item to be drawn 对象绘制的每个项目的变换。与此相反,局部变换则是应用于要绘制的特定项目的变换。 |
| 7. | They selected the most effective ways to bring into play of their functions , namely by focusing basic roles and proliferating effect of the local transformations and grass - roots organizations 它们选择了能够发挥最佳效能的路径,即重视社会基层变革和建设的基础作用和扩散作用。 |
| 8. | For example , you can use the world transformation to revise the coordinate system and use local transformations to rotate and scale objects drawn on the new coordinate system 世界变换可与局部变换合并,以得到多种结果。例如,世界变换可用于修正坐标系统,而局部变换可用于旋转和缩放在新坐标系统上绘制的对象。 |
| 9. | Wavelet transform is a time and frequency local transformation and it can withdraw the information from the signal . through the calculate function making the muti - scale analysis it resolves many difficult problems which fourier transformation ca n ' t resolve . in recent years the researches and the applications of wavelet transform on the image compression are flourish , but because wavelet transform is very complicated and its apply has certain localizations 小波变换是一个时间和频率的局域变换,因而能有效的从信号中提取信息,通过伸缩和平移等运算功能对函数或信号进行多尺度细化分析,解决了fourier变换不能解决的许多困难问题。近年来小波变换在图像压缩的研究和应用都十分活跃,但是由于小波的理论很复杂,因此应用起来就有一定的局限性。 |